When I was 6, my parents gave me my first disposable camera and I ran outside into the sunny Stanford afternoon and immediately took, in rapid succession, 26 blurry photos of a bush. I wanted pictures of it growing. For some unfortunate reason, I eventually grew up and I stopped paying attention to plants. I think you once told me—or gushed, most likely—that you had plants. I don’t remember specifically. I can only recognize the presence of plants by plant-shaped gaps in my memory. I can’t remember the actual plants themselves. That is, itself, a sign of those times.

But then, mid pandemic, I was suddenly re-beguiled by their verdant wiles. Plants are beautiful, delicate, mute repositories of life and yet they absolutely bustle. Quitely, they bustle. Sometimes I look at them and imagine how imperceptibly they are growing, with fragile inevitability. Even if I can’t see them grow, they are, without doubt, growing. They even represent sort of perceptual paradox for me: having observed them quite often, I am required to conclude that they are growing day over day, but I can never see them grow. Only when I am not looking. It fascinates me. Absolute dopamine factories, they are.

What’s also cool about plants is that they act as a reciprocal canary-vessel for self-care. Vessel: as they bring me oxygen and joy, taking care of them benefits me, and in the time I set aside to tend to them, I am required to chill the fuck out for a second. Canary: if I don’t chill the fuck out and tend to them, they wilt, which gives me an easy visual representation of my fraying sanity. In this way they embody and promote good vibes all around, which is dope. Plus, girls love plants. Basically, plants are lit.

But plants take like fooooorever to grow and while, yes, the last paragraph is all about the mindfulness of the green goobers, didyouknowplantsgodormantinthewinterwheretheymightnotgrowatall? That’s dumb. After some careful questioning of the local college kid who staffs the overpriced ~vibey~ nursery by my house, I figured out that the dormancy of the plants is only dependent on 3 factors: heat, humidity, and light/dark cycles. It wouldn’t feel right to engage in mindfulness without a little bit of optimization, right? And that’s how I got into making lamps. Plants need light. Loads of it. And so now my new thing is lamps, because they help plants grow, and also because this one girl from hinge said “like, isn’t everyone into plants now? But lamps are underrated.” Lamps are lit.


So the commission for this was a rescue grow-lamp for a Pothos stranded in a corner of a sterilely lit house my friends built themselves. Their house includes a lot of warm tones, light wood, and minimal design accents. Therefore, the key aspects of the lamp were: minimal, modern, super-warm, bright-but-indirect lighting (plants love bright-indirect) in the >800 lux region with a >1 foot light dispersal area.

I’ve seen a lot of halo lamps for grow lights; the circular arrangement is actually quite efficient for even light dispersal over a large area, but they always look a bit Christmas-kitch to me. I needed something to break up the IG lowest-common-denominator design and root it solidly in minimal post-modern, so I slapped some emergent complexity on the halo with easy-to-fab rectilinear slats.

Conceptual render

My major innovation in this space is using an infill-only slicing (0-wall gyroid infill support block @ 11% infill, thanks to Cura’s easy slicer interface) to create a fully solid yet translucent PLA shade.

Cura slicer preview

I paired this with the very warm-toned and very exciting fully compostable NonOlien PLA from Filamentum, printed hot (189°C) on the Ender 3 V2 (super affordable entry-tier printer, very easy to use). It came out smashingly, although at this temperature, the flow compensation and print accuracy was poor, so I had to undersize the zero-clearance interfaces by a whopping 370µm on each side. 5 hours of printing later, though, I had exactly what I had hoped for:

Test fit

The slats are 3 strips of 1×5″ poplar with the middle slat cut down to a 1.5″ relief, laminated longitudinally and then cut in 8mm strips transversely. I finished the poplar with 4 coats of Waterlox (soft wood is super thirsty) and a finish coat of semi-gloss Polycrylic, slapped some super warm high density 2700k LED strip lights in there and added a 2.1mm barrel connector for an easy 12V connection to an affordable 2A power supply (due to the 1.5m of installed LEDs). The results:

Installed with the happy owner and happy plant—easy style!


What’s the right wedding gift with 30 days of lead time when your friends are stranded across the Canadian border because of a global pandemic but they’re willing to risk it all for love and get married in a DMZ? I went with an Ikea cutting board. Well—to start.

It turns out that in places where border boundaries are blurred the acoustic offerings are slim. Without loud music (and strong drinks) no party is bompin, and without a bompin party, it’s not a wedding, so there was really only one thing to do: make a matching & linkable set of portable, hi-fidelity bluetooth speakers:


Cost of parts: $150 (ea.)
Loudness: 96dBSPL, 1m, @ 10% THD, A-weighted
Frequency Response: 50Hz to 20kHz ±5dB (but look at the curves down below)
Connectivity: Bluetooth 5.0
Battery: 3S Lithium-Ion, 37Wh
Runtime: 10 hours at “half volume” input (92dBA output)
Amplifier: 2x50W TPA3116D2 running @ 24V
Difficulty of Build: Dummy high—approx 120hrs from start to finish, requiring 2 CNCs and a 3D printer

In a lot of ways, this was a 2020 capstone project for me: to make something that’s loud, compact, and full of deep bass, with a 30-day conception to finish timeline, I had to pull out at least half of the dirty tricks I’ve learned over the last six years. Here’s how it went down.


When it comes to compact loudness with a lot of bass, excursion and efficiency are the belles of the ball, and although I simulated almost every 2-4″ driver I could find, the Dayton ND91-4 drivers (descended from long-gone AuraSound’s Neo-Radial IP) are nearly unbeatable when you factor in magnet strength, Fs, Xmax, price and weight. E.g. Peerless SLS-85S25CP04-04’s (catchy name huh) are potentially 1dB louder for a similar box size but weigh 285% more, while the Fountek FR89EX win for Xmax but need too much back volume and are 2dB less efficient…etc and so on. Just trust me on this one. In a 1.5-2.5 litre box: ND91-4, tuned low.

Tweeters are a fair sight more efficient, so down selection should be mostly driven by crossover frequency, dispersion and ease of integration. The ND91s break up right after 3kHz:

While the ND16/ND20 tweeters are truly amazing, they have to be crossed higher, and they come with a bunch of extra plastic, which clashes with the ultra compact layout I pushed.  LaVoce’s TN100.70 did the trick and can be crossed over at 1.5kHz, which was perfect—the lower a tweeter can be crossed (disclaimer: within its volume displacement limit), the better. Finally, the TN100.70 dispersion is on par with the ND20FA tweeter @ 20kHz (-15dB):

As for the port, in order to maintain compactness and b-b-bass, I had to fit 250mm of port into a 2.5L box while keeping a holdable 4-inch width so I folded it around the ND91 and then crushed the port geometry until it fit in between the driver and borders of the speaker. Tweeter in green, port/body in pink, and woofer in yellow below:

Driving the woofer and tweeter is a 3S 3500mAh battery pack (I use LG 18650s that I order B2B from the factory) paired to a 2x50W Class D TPA3116 D2 amplifier through DC-DC step up converter for maximum power delivery. WONDOM makes a wonderful TPA3116 board with the DSP integrated, which merges with their 3S MPPT Battery Management Board, although to my late-stage chagrin neither of the boards have a step up to power the TPA chipset at an adequate 24V.


With the acoustic design tucked away 15 days from the deadline, it was time to build. The octagonal outer shell is just a set of 22.5° mitres, tape-clamped, with the patent-pending dual-bevel 8th wall precision cut to match:

The front face was a 2 sided CNC operation, which required calibrating features for aligning the Shaper Origin I used.

Merging the two pieces with the speakers and the front mounted the port was rather easy except for some minor mishaps with a few missing microns; the t-nut I planned to use to rear-mount the woofers were exactly 300 microns short of the planned front face thickness, so after sanding I had two t-nut holes showing on the front face. The port itself had to be printed in 3 pieces because of the complexity of the geometry to fit it both on the border and between the woofer and the back panel:

With space at a premium, but also for aesthetics, I used an LED array for status lights and integrated the on switch into the potentiometer. With that in mind, I also fabbed an ultra slim 6mm bracing/sealing ring for the rear panel mounting, as a butt joint would’ve been ugly but the shell was too thin/weak for threaded inserts. Those loose microns got me again and the flange on the port interfered with the built dimensions of the rear panel, so I slotted that out, but after some truly painstaking finagling of circuit boards, 5 days before the wedding ship date, I was ready for sound test.

That’s when I realized neither the BMS nor the Amp was using a boosted rail which was causing very noticeable voltage clipping, so I had to rip everything open and shove not only a DC-DC buck converter but a giant LC ripple filter (1.3mH L and 100µF C) onto the voltage rail. The only DC-DC buck converters I had in house were straight outta Hua Qiang Bei which means the were both cheap and poorly designed. Buck converters are in general awesome, and about as efficient as one could hope (for 12 to 24V boost, I saw ~85% efficiency depending on load), but the switching causes a lot of load-dependent ripple, which adds both noise and intermodulation into the signal chain. But with that bullet bitten, and with 1 day until ship, it was time to tune. And boy does this design sound good. Sparing the details of the tuning, here’s the final frequency response with a -3dBFS sine sweep @ half input “volume.”

The 2nd harmonic distortion looks pretty high @ 50Hz but this is mostly due to the aggressive non-linear processing I added in for extra kick; a more reasonable measure of THD in this scenario are the 3rd order harmonics, which I kept below 8%. The dips in the mid band (400Hz, 800Hz) are regrettable from a data standpoint (probably due to product baffle dimensions) but overall, these speakers deliver supple bass, smooth vocals, crisp treble, and excellent definition from 50Hz all the way to 20kHz. I added a little bit of level-dependent EQ, so at maximum volume these speakers are loud enough to kick off a backyard party, and at reasonable volumes they deliver a little extra extension for a very full, deep, frequency response. In my book, a thermos-sized speaker that can fill a room down to 50Hz ticks the “bigger than it looks” box; even from another room I found my self saying “damn, these sound good.”


There are far more than five senses available to you in this awful wonderful human sensorium and one of them is the sense that You Could’ve Done Better. But this was not one of those times.

You ever see something and think “I bet I could make that, but better, and more cost-effective”? You ever think “I could make a portable, hi-fi, PA speaker with shit-your-pants bass, noise-complaint SPL, and art-gallery looks”? You ever sit at home and wonder “what if I went all out? What if it was way too big and way too loud and way too pretty?” Yeah, me too. This time I did it.


This was probably a time that I should’ve done less, but didn’t. In scoping out a project on commission I usually discuss

  • Portability
  • Loudness
  • Bass/quality
  • AssAesthetics

The discussion should and usually does occur late at night over libations which contributes to some amount of scope creep—in a good way—and in this case we started at:

  • Portable enough
  • Loud enough the neighbors want to come to the party too
  • Yass bass
  • Museum worthy

I was thinking of a very reasonable design—1 cu ft, 36V battery, maybe 2 W6-1138 (but with Neo woofers for weight). But then something terrible happened. I saw a targeted Facebook ad for the Soundboks 2; it was was full of shitty marketing claims and absurd dBSPL/battery life statements and poorly mixed dubstep (like, dubstep is fine, just don’t mix it badly or use it to tout sound quality). Here are some reference claims:

I’m not an acoustic engineer, but—wait, no, no I am. These are bullshit metrics. What kind of half-assed sound company specifies a “dB” value but no reference for the units (SPL? Re?), distance, or weighting (A? K?). I could fart at 122 “dB” for a battery life of 40 hours if I’d put the mic by my arse.

For the un-initiated this is the equivalent of saying “Oh yeah my car is really fast, it’ll do 120.” 120…what? MPH? KPH? Like when you drive it? Or when you throw it off a cliff?

Anyway fair to say this bothered me slightly and the new goal was to make a speaker that was better than the Soundboks 2. A portable party in a box. My specific objective goals were:

  • 122dBSPL (Re) @ 1m in the passband
  • Passband 40Hz to 20 kHz
  • f3 @ 38 Hz
  • Directivity controlled ± 4 dB up to 15 kHz

*For the sake of clarity, if not otherwise specified, all dB numbers in this document will be dBSPL @ 1m relative to 20 µPa.


Speakers assembled to front face


On the spectrum of “large/efficient” and “small/inefficient” for a constant bandwidth target, there are three main real-life ways to achieve this in the range of “reasonably portable.”

“Pro” speakers in a large box, i.e. lots of magnet, low moving mass, stiff surround. Think FaitalPro12XL

  • + efficient as hell
  • – generally 8 ohms
  • – $$
  • – Fs is often quite high

“Tang band” style in small box, i.e. lots of magnet, lots of coil, tons of moving mass, allowing for really low free-air resonance and massive linear excursion space.

  • + compact 
  • + always impressive for size
  • – $$
  • – low efficiency

“Dayton Audio” style in a medium box: Medium BL, medium mms, heavy magnet

  • + cheaper
  • + pro-sumer design means well controlled directivity, well designed in-band response
  • + reasonably efficient
  • – heavy
  • – has potential to be “worst of both worlds”

Here’s a quick comparison of the three designs plotted at a very reasonable 100Wrms:

Simulated FR @ 1Wrms

The Iron Law clearly demonstrated here: The Dayton design is in the middle for sensitivity but sacrifices on size to get extra bass. The Tang Band, which will never have the sensitivity of the DA or the FP design, loses a little bass to be small, but has overall good LF extension. The Pro design is huge and efficient but loses on LF extension. But wait! This is battery powered! We’re voltage limited! How do 2 4 ohm drivers shake out against 1 8 ohm driver?

@ Battery Nominal Voltage

The Dayton Audio design clearly wins out (dotted lines are theoretical response vs Pmax/Xmax limited response). The final question: can we kill the Soundboks? If we disregard all concerns for safety, in theory—nearly:

At 1100 Watts of input power (rms), 2 DCS205s are capable of outputting 121.2 dBSPL @ 1m @ 100Hz. The Xmax limitation cuts heavily into the bass output below that. But this design will sound better, look better, and be smaller, so DCS205 it is!

The final choice for bass—sealed, ported or passive? A simple one; sealed sucks for battery-powered. The port would’ve had to have been huge to handle the requisite volume velocity with grace, so after modeling every single DSA, I opted for 2x DS315 12″ PRs + 100g to tune to 38 Hz. These are quite wonderful passives—huge xmax, Rms for days, low enough Fs, and their ID matches the DS205s.

Full send:


Knowing that we’re in the neighborhood of 115 dBSPL@1m @ 50V input makes things a bit tricky from 300Hz to 20kHz. Pro sound options are mainly focused on output efficiency, with the sacrifice being directivity and flatness of response (DA PK165-8 below, which had neither the efficiency nor the response I was looking for):

What a terrifying directivity curve

which would essentially demand that you cross it over at 2kHz—untenable for a tweeter capable of 115 dBSPL.

Luckily, there weren’t that many options, and when one can’t sacrifice loudness, quality, or size (i.e. directivity), you must pay a lot of money. I landed on the beautiful and beautifully expensive FaitalPro M5N8 which measures like:

Their claimed efficiency of 99dB @ 1W/1m is a little short of the truth (95dB@1W/1m) but they manage an easy 117 dBSPL with xmax and plim constraints:

Throw it in (a 3D printed back volume to separate it comes in later):


There was really only one option: the Peerless by Tymphany BCS25SC08, a silk dome tweeter + a (small) horn for efficiency. 98 dB, 100W of power handling (they get ragged before that, though), and the horn rather small so the directivity actually rather pleasant (this is in 30 deg intervals compared, the midrange plot was at a 45 deg intervals).

Throw that in the bag too:

And then for a back volume, the passives:

Next up is the electrical design. Stay tuned!